6 research outputs found

    The Development of Novel Interconnection Technologies for 3D Packaging of Wire Bondless Silicon Carbide Power Modules

    Get PDF
    This dissertation advances the cause for the 3D packaging and integration of silicon carbide power modules. 3D wire bondless approaches adopted for enhancing the performance of silicon power modules were surveyed, and their merits were assessed to serve as a vision for the future of SiC power packaging. Current efforts pursuing 3D wire bondless SiC power modules were investigated, and the concept for a novel SiC power module was discussed. This highly-integrated SiC power module was assessed for feasibility, with a focus on achieving ultralow parasitic inductances in the critical switching loops. This will enable higher switching frequencies, leading to a reduction in the size of the passive devices in the system and resulting in systems with lower weight and volume. The proposed concept yielded an order-of-magnitude reduction in system parasitics, alongside the possibility of a compact system integration. The technological barriers to realizing these concepts were identified, and solutions for novel interconnection schemes were proposed and evaluated. A novel sintered silver preform was developed to facilitate flip-chip interconnections for a bare-die power device while operating in a high ambient temperature. The preform was demonstrated to have 3.75× more bonding strength than a conventional sintered silver bond and passed rigorous thermal shock tests. A chip-scale and flip-chip capable power device was also developed. The novel package combined the ease of assembly of a discrete device with a performance exceeding a wire bonded module. It occupied a 14× smaller footprint than a discrete device, and offered power loop inductances which were less than a third of a conventional wire bonded module. A detailed manufacturing process flow and qualification is included in this dissertation. These novel devices were implemented in various electrical systems—a discrete Schottky barrier diode package, a half-bridge module with external gate drive, and finally a half-bridge with integrated gate driver in-module. The results of these investigations have been reported and their benefits assessed. The wire bondless modules showed \u3c 5% overshoot under all test conditions. No observable detrimental effects due to dv/dt were observed for any of the modules even under aggressive voltage slew rates of 20-25 V/ns

    Design, Fabrication and Characterization of Plasmonic Fishnet Structures for the Enhancement of Absorption in Thin Film Solar Cells

    Get PDF
    Incorporating plasmonic structures into the back spacer layer of thin film solar cells (TFSCs) is an efficient way to improve their performance. The fishnet structure; which is a tunable, plasmonic light scatterer is used to enhance light absorption. Unlike other plasmonic particles that have been previously suggested, the fishnet is an electrically connected wire mesh and does not result in electric field localization, hence it results in greater absorption in the intrinsic Si layer. Unlike other designs, the fishnet structure is placed in the back spacer layer of the TFSC, so it does not block any incident light. There is also the possibility of integrating back contacts with the fishnet for efficient carrier collection. In addition to its performance, the fishnet structure can be fabricated using low cost nano-imprinting techniques. The fishnet structure has been studied theoretically in previous research, but this is the first time that the performance of the fishnet has been verified experimentally. The fishnet structure originally proposed in the theoretical study was made of gold, but keeping industrial viability in mind, the choice of metal was changed to silver for this study. The design for the silver fishnet was optimized using full wave electromagnetic simulations in the High Frequency Structure Simulator (HFSS) by Ansoft. The design geometry was tailored to resonate at the band gap of the absorber material (Si), where the absorption coefficient of Si is very low. The goal was to enhance absorption in this region, without causing any degradation of absorption in the other parts of the spectrum. The silver fishnet structure was fabricated using Electron Beam Lithography (EBL) and thermal evaporation. The other layers of the thin film solar cell (TFSC) were deposited on top of this structure, so that the final fabricated structure optically resembled a TFSC. The absorption of the sample was measured using Spectroscopic Ellipsometry (SE) and was compared with the absorption of a control sample sans the fishnet. It was shown that light absorption is enhanced by a factor of 12.8 at the resonance frequency due to the presence of the fishnet structure. The short circuit current (JSC) increased by 30%. Not only was there no observed degradation at other wavelengths, but the overall absorption also increased as a result of using the fishnet. The theoretical model was also improved to provide better correlation between theory and experiment

    High Performance Silicon Carbide Power Packaging—Past Trends, Present Practices, and Future Directions

    No full text
    This paper presents a vision for the future of 3D packaging and integration of silicon carbide (SiC) power modules. Several major achievements and novel architectures in SiC modules from the past and present have been highlighted. Having considered these advancements, the major technology barriers preventing SiC power devices from performing to their fullest ability were identified. 3D wire bondless approaches adopted for enhancing the performance of silicon power modules were surveyed, and their merits were assessed to serve as a vision for the future of SiC power packaging. Current efforts pursuing 3D wire bondless SiC power modules were described, and the concept for a novel SiC power module was discussed

    Enhanced Light Trapping in Thin Film Solar Cells Using a Plasmonic Fishnet Structure

    No full text
    Incorporating plasmonic structures into the back spacer layer of thin film solar cells (TFSCs) is an efficient way to improve their performance. The fishnet structure is used to enhance light trapping. Unlike other previously suggested discrete plasmonic particles, the fishnet is an electrically connected wire mesh that does not result in light field localization, which leads to high absorption losses. The design was verified experimentally. A silver fishnet structure was fabricated using electron beam lithography (EBL) and thermal evaporation. The final fabricated structure optically resembles a TFSC. The results predicted by numerical simulations were reproduced experimentally on a fabricated sample. We show that light absorption in the a-Si absorber layer is enhanced by a factor of 10.6 at the design wavelength of 690 nm due to the presence of the fishnet structure. Furthermore, the total absorption over all wavelengths was increased by a factor of 3.2. The short-circuit current of the TFSC was increased by 30% as a result of including the fishnet

    The Relation between Rotational Dynamics of the Organic Cation and Phase Transitions in Hybrid Halide Perovskites

    Get PDF
    The rotational dynamics of an organic cation in hybrid halide perovskites is intricately linked to the phase transitions that are known to occur in these materials; however, the exact relation is not clear. We have performed detailed model studies on methylammonium lead iodide and formamidinium lead iodide to unravel the relation between rotational dynamics and phase behavior. We show that the occurrence of the phase transitions is due to a subtle interplay between dipole-dipole interactions between the organic cations, specific (hydrogen bonding) interactions between the organic cation and the lead iodide lattice, and deformation of the lead iodide lattice in reaction to the reduced rotational motion of the organic cations. This combination of factors results in phase transitions at specific temperatures, leading to the formation of large organized domains of dipoles. The latter can have significant effects on the electronic structure of these materials.ChemE/Opto-electronic Material
    corecore